Monthly Archives: July 2016


Overtone Music Network

a common space & database for harmonic overtones

Tran Quang Hai’s Connections

  • Johannes Lind
  • Nicolas Lespinasse
  • Moisés Pérez Miguélez
  • Nicolas MOREAU
  • Javier Nahum
  • Aleksey Khoroshev
  • Albi Wethli
  • grover
  • Rasmus Sejersen
  • uRYa
  • Arjopa
  • Frank Perry
  • giulia
  • Raffaele Schiavo

Tran Quang Hai’s Groups

Vocal Folds, University of Washington, USA


Visit my new blog :
There are more than 600 articles, video clips concerning overtone singing from Tuva, Mongolia, Inner Mongolia, Altai, and Western performers .


Published on Apr 22, 2013
TRAN QUANG HAI SINGS A MONGOLIAN TUNE WITH OVERTONES, BERLIN, at Grosser Stern, Berlin (Germany), April 12th 2013

TRẦN QUANG HẢI hát một bài dân ca Mông cổ với kỹ thuật hát đồng song thanh, tại Grosser Stern, Berlin (Đức), ngày 12 tháng 4, 2013

[English Lyrics] Mongolian Song – Ode to Auspiciousness [Chinese CCTV Lunar New Year Gala 2011]

[English Lyrics] Mongolian Song – Ode to Auspiciousness [Chinese CCTV Lunar New Year Gala 2011] 

Uploaded on Feb 6, 2011
Amazing! This song is sung by Anda Union (安达组合), the best Mongolian throat singing band in China. The music is written by Se Enkhbayar (色 恩克巴雅尔), one of the most well-known ethnic Mongolian Chinese musicians. The singers used two traditional Mongolian singing techniques in this song.

Mongolian Long Song Singing (or 长调) (see: 00:2300:37, 02:0502:22)
Mongolian Throat Singing (or Khoomii, 呼麦) (see: 00:4000:55, 01:0201:10, 02:2302:37)

English lyrics translated from Mongolian:
Auspicious and wish-fulfilled life blessed by skylights,
Splendid and gorgeous yurt roofs,
Doors and windows made by purple sandalwoods.
These are our homes.

Our sacrifice offered to the grand sky and earth.
Our worship paid to the sacred mountains and rivers.
Playing prolonged horse-fiddle tunes,
We sing melodious Mongolian Long Songs.

Let us sing and dance,
To extol our happy life.
Let us sing and dance,
To bless our eternal motherland.

Ethnic Mongolian Chinese:…


TRAN QUANG HAI sings Tuvin tunes with overtones, BERLIN (GERMANY) , April 12th 2013

Published on Apr 22, 2013
TRAN QUANG HAI sings Tuvin tunes with overtones, BERLIN (GERMANY)
Filmed by Jens Muegge , April 12th 2013

TRAN QUANG HAI : The World of Overtones

Profile Information

About me:
Read my biography on my website:
As a band we are:
International Council for Traditional Music (Australia)
Society for Ethnomusicology (USA)
Asian Music Society (USA)
Societe Francaise d’Ethnomusicologie (France) (founding member)
International Jew’s Harp Society (UK) (founding member)
Vietnam: 16 stringed zither dàn tranh, monochord dàn bâu, 2 stringed fiddle dàn co, spoons muông , coin clappers sinh tiên, Jew’s harp dàn môi
China : 2 stringed fiddle nan hu
India : Tampura, Vina
Iran : drum tombak
Indonesia: Javanese gamelan
Europe: violin, guitar, banjo, mandolin, Jew’s harp
Mongolian maestro SUNDUI, Tran Van Khê for Vietnamese Music

Comment Wall (72 comments)

You need to be a member of OMN to add comments. Sign up, it’s free!

Join Overtone Music Network

At 11:56am on October 29, 2011, Rollin Rachele said…
Hi There,
I hope you’re well. Just thought you’d like to visit my new overtone singing website. You can find it at
Best wishes,

At 5:14pm on September 1, 2010, Jens Mügge said…
Dear Hai,

I added this photo here to Overtone Music Network.

All the best,

At 6:47pm on June 24, 2010, Nicolas Lespinasse said…

At 10:40pm on June 12, 2010, giulia said…
Hi Tran Quang Hai! Great lesson! Nice to meet you in Toscana! Giulia from Spazio NU

At 11:25pm on February 4, 2010, Jens Mügge said…

Dear Hai,

a Happy Tiger Year for you too!
All the best,


At 11:44am on November 12, 2009, Sarah Hopkins said…
Greetings Tran Quang Hai… from Sunny Brisbane !
I hope this finds you in good health & spirits ? It’s been many years since we met in Singapore where we were both running Overtone Singing Workshops at the World Choral Symposium ….
I’ve finally joined the OMN & would love to be connected with you . My apologies for taking SO LONG to join !! (You invited me to join when it first began …I’m a bit of a novice with computers !!) Thank you for all the good work you do in spreading & sharing overtone singing world wide.
Sonic Blessings, Sarah Hopkins

At 8:51pm on May 22, 2009, Anthar Kharana said…
Thanx for your message Tran Quang!

will be in touch as soon as I’ve got them 😉
lots of love!! and sonic hugs!

At 9:55pm on April 30, 2009, Purevsuren Usukhjargal said…
Hallo Tran Quang Hai,

I`m glad to have meet you one Koncert (music gruppe ) in France.
you websait is very good.

Greeting from Ingolstadt

At 11:11pm on April 24, 2009, Jens Mügge said…
Thanks a lot Hai for sharing some of your photos from our common meeting in Berlin and thanks that I could saw how kind you are. Really it was wonderful to meet you and I wish to meet you soon as possible. By the way maybe you have noticed the national flags in the top of each page? It would be great if you can contribute from time to time a translation contribution to the Google Vietnamese or French version of this network. Only if you like … all the best, yours Jens

At 7:16pm on April 20, 2009, Arjopa said…
Yeah, Dear Hai!!
And here are two photos I really like best!!
Thanx a lot!!


Gerrit Bloothooft, Eldrid Bringmann, Marieke van Cappellen, Jolanda B. van Luipen, and Koen P. Thomassen : A phonetic study of overtone singing



We describe the phenomenon of overtone singing in terms of the classical theory of speech production. The overtone sound stems from the second formant or a combination of both the second and third formants, as the result of careful, rounded articulation from //, via schwa // to /y/ and /i/. Strong nasalisation provides, at least for the lower overtones, an acoustic separation between the second and first formants, and can also reduce the amplitude of the first formant. The bandwidth of the overtone peak is remarkably small and suggests a firm and relatively long closure of the glottis during overtone phonation. Perception experiments showed that listeners categorize the overtone sounds differently from normally sung vowels.

A phonetic study of overtone singing


Gerrit Bloothooft, Eldrid Bringmann, Marieke van Cappellen, Jolanda B. van Luipen, and Koen P. Thomassen



Research Institute for Language and Speech, University of Utrecht
Trans 10, 3512 JK Utrecht, The Netherlands


1. Introduction

Overtone singing is a special type of voice production resulting in a very pronounced, high and separate tone which can be heard over a more or less constant base sound. The technique is rarely used in Western music but in Asia (especially Mongolia and Tibet) it is more common and overtone singing can be heard during secular and religious festivities. The high tone follows a characteristic musical scale [for instance, for pitch C3 (130.8 Hz) (- and + indicate a deviation from the exact tone): C3, C4, G4, C5, E5-, G5, A5+, C6, D6, E6-, F6+, G6, G#6+, A6+, B6-, C7,… ], from which it can be concluded that one really hears an overtone of the fundamental.

The literature contains only a few reports on overtone singing [1,5,7,8], which indicate both the importance of formants and register type. In this paper we present both an acoustic analysis of overtone singing and a study to evaluate the perception of the overtone sounds, in relation to normally sung vowels.

2. Material

We have recorded series of sung overtones from a singer with many years of experience in overtone singing, both as a performer and as a teacher. In this paper we describe the results for an Fo value of 138 Hz (C#3). In addition, 12 Dutch vowels /a/, /a/, //, /o/, /e/, //, //, /i/, /oe/, //, /u/, and /y/, sung in a normal way at the same Fo, were recorded.

3. Acoustic analysis

The recordings were digitized at a rate of 10 kHz and stored in a computer. From the middle, stable, part of each recording 300 ms was segmented. Average power spectra were obtained from FFT analyses (1024 points, shift 6.4 ms) over this segment. Formant frequencies were computed on the basis of appropriate LPC or ARMA analysis.

3.1. FFT-Spectra

Figure 1 shows the average FFT spectra of all overtone recordings. Despite the averaging procedure, the width of each individual harmonic is limited, indica-ting the stability of Fo over the interval (standard deviation of Fo was less than 0.1 semitone in all cases). It can be seen from the shifting peak in the spectra that overtone singing seems interpretable as a special use of a formant. Obviously, the singer tries to match a formant with the intended overtone frequency and succeeds very well.

Frequency (kHz)

FIG. 1. Average FFT spectra for overtone sounds, sung at Fo = 138 Hz (C#3). The overtone sounds are numbered according to the main partial involved.

3.2. Formant frequency analysis

In Fig. 2 we present formant frequency results for both the overtone sounds and the sung vowels in the F1 – F2 plane. The figure shows two modes in the production: firstly, the overtone sounds 4-6 around /u/, and secondly, the track from // to /i/.

In the first mode, it can be seen from the FFT-spectra that there is energy absorbtion around 400 Hz, indicating a strong nasalisation. The characteristic overtone sound resides in the second formant, as others [1,8] had already suggested. The bandwidth of the second formant is very narrow and, especially for the lower overtones, seldom exceeds 40 Hz. This indicates little acoustic damping in production: firm glottal closure and small losses in the vocal tract. All these characteristics indicate a low, rounded, nasalised, back vowel /u/ or // (low F1 and F2, a nasal pole/zero pair, and suppressed F3 [3]).

The second mode in the production of an overtone sound, applies for overtone frequencies higher than 800 Hz. The main peak of the spectrum still rises in tune with the intended overtone frequency and is interpreted as a combination of F2 and F3. It may be of interest that the singer explains this series of overtones with the articulatory variation during the word ‘worry’. It is known, already from the Peterson and Barney data, that in a retroflex /r/ the F3 frequency can be remarkably low and can approach the F2 frequency. This has also been mentioned by Stevens (1989), especially in combination with liprounding, while Sundberg (1987) mentioned the effect as the acoustic result of a larger cavity directly behind the front teeth.

For the higher overtone sounds, the articulation comes near /y/ and /i/, where continued lip rounding makes it possible to bring F2 and F3 together [4], although for the highest overtones a subtle lip spread may be needed to reduce the front cavity to a minimum.


FIG. 2. F1 – F2 plane for stimuli sung at Fo = 138 Hz, with positions of the vowels (IPA symbols) and overtone sounds (represented by the number of the corresponding partial).

3.3. The glottal factor

The very narrow bandwidth of the “overtone formant” suggests a good and long glottal closure. We believe that the singer used modal register, with a relatively long glottal closure, originating from a firm glottal adduction. This hypothesis does not exclude that performers may use the vocal fry register as well [7]. In all cases, the long glottal closure requires a strong adduction of the vocal folds, which could easily result in general muscular hypertension in the pharyngeal region. This may relate to the prominent role of the buccal cavity, suggested by Hai (1991).

3.4. Intensity analysis

Up to an overtone frequency of 1.5 kHz, the overtone harmonic has a stable relative intensity of -10 dB relative to overall SPL, and dominates the spectrum. For higher frequencies, the relative level of the overtone harmonic sharply drops with a slope of about -18 dB/octave.

4. The perception of overtone singing

4.1. Material, listening experiment, and analysis

As stimuli we used the combined set of 14 overtone sounds and 12 Dutch vowels. From these stimuli we used the same segment (300 ms) as had been used for the acoustical analyses, but we shaped the first and final 25 ms sinusoidally to avoid the perception of clicks. In a computer-controlled experiment, these stimuli were judged by fifteen listeners on ten 7-point bipolar semantic scales. Further details of semantic scales will be presented in a forthcoming paper. The judgements were analyzed by means of multidimensional preference analysis MDPREF [2]. In the technique of MDPREF a stimulus space is constructed in which distance corresponds to perceptual (dis)similarity.

4.2. The perceptual stimulus space

The plane of the first two dimensions of the stimulus space is shown in Fig. 3. 41 % of the total variation in the judgements was explained in this plane, while higher dimensions each explained less than 6.3 %.


FIG. 3. The perceptual stimulus space. The overtone sounds are given by the number of their corresponding partial, the vowels by their IPA symbol.

The overtone sounds and normally sung vowels are perceptually separated clusters. The vowels are situated roughly in a triangle, with the cardinal vowels /i/, /u/, and /a/ at the angles. The overtone sounds are roughly ordered according to their harmonic number, although the stimuli numbered from 4 to 10 can be described as a cluster. This probably relates to the constant relative energy of the overtone harmonic for this set. The direction of the overtone sounds is, from the lower to the higher numbers, about the same as from /u/ to /i/, as may be expected from the relation between harmonic numbers and F2 frequency values.

4.3. A physical description of the perceptual stimulus space

We attempted to match the perceptual stimulus space with multidimensional physical descriptions of the stimuli [formant frequency space (see Fig. 2), 1/3-octave bandfilter energy space both by means of the Plomp metric and the Klatt metric [2,6]]. These attempts were not successful (low correlations between coordinate values along dimensions) because of the division into two clusters of the stimulus space, for which these metrics do not present an explanation. Some additional perceptual sensitivity to the very small bandwidth of the “overtone formant”, which clearly physically separates overtone sounds and normally sung vowels, seems necessary to explain the results.


[1] Barnett, B.M. (1977), “Aspects of vocal multiphonics”, Interface 6, 117-149.
[2] Bloothooft, G. and Plomp, R. (1988), “The timbre of sung vowels”, JASA 84, 847-860.
[3] Fant, G. (1960), ” Acoustic theory of speech production” The Hague: Mouton.
[4] Fujimora, O., and Lindquist, J. (1970), “Sweep-tone measurements of vocal tract characteristics”, JASA 49, 541-558.
[5] Hai, T.Q. (1991), “New experiments about the Overtone Singing Style”, Proc. Conference ‘New ways of the voice’, Becançon, 61.
[6] Klatt, D.H. (1982), “Prediction of perceived phonetic distance from critical-band spectra: a first step”, Proc. ICASSP, Paris, 1278-1281.
[7] Large, J. and Murry, T. (1981), “Observations on the nature of Tibetan chant”, J. of Exp. Research in Singing 5, 22-28.
[8] Smith, H., Stevens, K.N., and Tomlinson, R.S. (1967), “On an unusual mode of chanting by certain tibetan lamas”, JASA 41, 1262-1264.
[9] Stevens, K.N. (1989), “On the quantal nature of speech”, J. of Phonetics 17, 3-45.
[10] Sundberg, J. (1987), “The science of the singing voice“, Dekalb: Northern Illinois University

Werner A. Deutsch & Franz Födermayr: Visualization of Multi – Part Music


 Frequency analysis of musical sounds came up to practical applications with the development of the Sound Spectrograph (Koenig, Dunn and Lacey, 1946). From the beginning much care has been taken to choice the frequency resolution and the time window properly in order to highlite important acoustical features as well as perceptual ones. It has been demonstrated by several studies (i.e. Potter, Kopp and Green, 1947) that the aural presentation of speech (and music) and its simultaneous graphic representation produces significantly deeper insight into the generation of acoustical signals and the ongoing perception as listening alone can provide.

Visualization of Multi – Part Music
(Acoustics and Perception)

Werner A. Deutsch (Austrian Academy of Sciences, Acoustics Research Laboratory) and
Franz Födermayr (Institute of Musicology, University of Vienna)


Frequency analysis of musical sounds came up to practical applications with the development of the Sound Spectrograph (Koenig, Dunn and Lacey, 1946). From the beginning much care has been taken to choice the frequency resolution and the time window properly in order to highlite important acoustical features as well as perceptual ones. It has been demonstrated by several studies (i.e. Potter, Kopp and Green, 1947) that the aural presentation of speech (and music) and its simultaneous graphic representation produces significantly deeper insight into the generation of acoustical signals and the ongoing perception as listening alone can provide.

Graf (1963) recognized the enormous potential of spectrographic analysis for applications in ethnomusicology. His theoretical concept assumes the acoustical signal to be the primary stimulus which is processed by the human psychophysiological system very much in the same way, even in different ethnic populations. What makes the various differences in interpretation, reception and perception under very similar acoustical stimulus representations prominent, is due to the influence of the so called social-cultural context in which music plays an important role.

Production Models

The pertinent acoustic analysis of musical signals with acoustic laboratory methods (which today can be performed by using a specially equipped laptop computer.) produces basically a complete set of acoustical parameters which can be displayed as graphical images of the spectral content, i.e. the physics of the musical signal in real time or of those performances which have been recorded in advance. The analysis data can be used as input to comprehensive production models of voice( see: Fant, G. (1970) Acoustic theory of speech production. Mouton, The Hague; 2nd edition), musical instruments and musical ensembles. Sound source characteristics, tuning, musical scales, timbre, agogics, free field and room acoustics etc. can be observed on the analysis parameters extracted directly from the musical signal. Musical scales, vibrato, pulsato, beats are measured and detected on the basis of the fundamental frequency analysis data and their related spectral components, timbre is very much determined by the spectral envelope of the signals, duration and rhythms are mainly derived from the energy contour etc.

Perception Models

Whereas production models of the singing voice and musical instruments describe the acoustics of musical sound sources only, perception models deal with the signal processing of the listeners auditory periphery, its associated central pathways and cortical functions. It has to be admitted that psychoacoustics first started from an acoustical engineering approach in order to collect all technical basic data of the human auditory system, as selectivity measured in terms of absolute thresholds, difference limens in frequency, sound pressure level, signal duration and many other psychophysical functions. Most of the early psychoacoustical research was launched by telephone technical laboratories ( Fletcher, H. 1929, 1953), by the need to avoid noise and distortions on the telephone lines or for compensation of the hearing loss of listeners. Engineers, physiologists and neurologists have described the mechanics of the outer and middle ear, the hydromechanics of the inner ear ( Bekesy, G.v. 1960), the hair cell system and the resulting neural response up to the brainstem ganglions as well as acoustical evoked responses on the cortex. For technical and methodological limitations this early research has been done in most cases applying musically less relevant sinusoids, which could be controlled in experimental procedures with sufficient accuracy. This has been critisized frequently by musicologists for dealing rather with musicological non relevant aspects of sound and arbitrary functions of the auditory system instead of referring to the cognitive concepts of music.

Nevertheless, as the work in psychoacoustics progressed, the basic data obtained from the human auditory system contributed to a comprehensive theory of hearing, which today is capable to include highly relevant aspects of auditory localization, speech and music perception. Today psychoacoustical models explain complex perceptual functions, as musical pitch of complex tones, melody contours, consonance-dissonance, simultaneous masking, forward and backward masking, figure-background discrimination as well as Gestalt of musical rhythms etc.

Visualization of polyphony

FFTs and Spectrograms

Applying the psychoacoustic knowledge to spectrographic analysis of polyphony, the visualization of musical signals represents both, the graphical output of psychoacoustic perception models and the physics of sound. The spectral analysis of any arbitrary acoustical signal at a given instant is obtained by its Fourier Transform which produces a pair of real-valued functions of frequency, called the amplitude (or magnitude) spectrum and the phase spectrum. The amplitude spectrum stays moreover as a first approximation for the (neuro-) physiological representation of the signal in the human auditory system, the phase spectrum can be neglected for spectrographical purposes:

As the time variant signal goes on, many closely time windowed overlapping Fourier Transforms have to be computed at short successive intervals (< 30 ms) in order to produce a pseudo-3dimensional continuous graphic display of the sound, the spectrogram. In general narrow band frequency components with slow variations in frequency are detectable as horizontal frequency lines, whereas very fast changes or signal envelopes of a transient nature appear as vertical broad band bars in the spectrogram. Many musical instrument sounds (plucked strings, striked bars etc.) have a very short broad band attack and a narrow band slowly decreasing decay. Thus the onset of a note is easily identified, not so the end of the decay especially in reverberant environments).

Beats: From left to right: simple tone 220 Hz, simple tone 227 Hz, two tone complex 220 Hz + 227 Hz with beating, two tone complex 220 Hz + 240 Hz (light roughness), two tone complex 220 + 260 Hz (roughness), two tone complex (musical fifth).

Interference, Beats and Roughness

Usually directly incident or reflected waves from many sources, sounding simultaneously (musical instruments, singing voices etc.), are superposed at the listeners ear position, producing interference when components of equal frequency appear. Constructive interference takes place when the crests of two waves coincide, resulting the amplitude will be twice that of either wave. Destructive interference occurs when the crests of one wave fall on the troughs of the second and cancellation will be obtained. In case of interference of components slightly different in frequency beats can be perceived. The beat frequency is given by difference between the frequencies sounding together; beats can be detected on the spectrogram as periodic rise and fall in amplitude on a single (horizontal) frequency line. Whenever the frequency difference exceeds a certain value of 20 Hz no beating can be heard anymore and the perception of roughness is raised which has its maximum between 40 and 70 Hz. Increasing the frequency difference further on (see: critical bandwidth) produces two tone perception.


One of the most difficult phases in the investigation of spectrograms is the decision wether or not a spectral component of a signal which physically exists can be perceived by the auditory system and to what extent. The phenomenon that spectral components of a complex tone are not audible, despite their considerable amplitude measured, is described by the human auditory masking function. Masking is (1) the process by which the threshold of audibility for one sound is raised by the presence of another (masking) sound and (2) the amount by which the threshold of audibility of a sound is raised by the presence of another (masking) sound. The unit customarily used is the decibel (ANSI S3.20-1973). Masking may be seen as a general loss of information or as an undesired decrease of sensitivity of the auditory system but in contrary it is one of the most important auditory functions in order to perform the frequency analysis of the ear. Masking helps to process the sound into perceptual relevant components either belonging to the same or different sounds; it determines which components are resolved by the ear as audible harmonics with spectral pitch as well as it fuses higher harmonics according to the auditory critical bandwidth.

Critical Bands

The critical band in hearing can roughly be described as that frequency band of sound, in between that two spectral components influence one another. This influence can be expressed in terms of masking, loudness summation, roughness, consonance, dissonance etc. The bandwidth of the critical bands remains constant with 100 Hz up to a frequency of 500 Hz and increases up to 17\% of the midfrequency value beyond 500 Hz. Consequently the distribution of the spectral components of any acoustical signal along the basilar membrane of the inner ear is best approximated by the Bark\footnote{according to the acoustician Barkhausen (1926). scale which corresponds to the frequency spacing of the critical bands. A formal expression for the computation of the Bark scale has been given by Zwicker and Terhardt (1980). The unit of frequency (f) is assumed to be in kHz, arctan in radiants:

  •  z_c /Bark = 13 arctan (0.76 f/kHz) + 3.5 arctan (f /7.5 kHz)2

As a result of the Bark transformation a much better frequency resolution in the linear low frequency range up to 500 Hz is obtained. The resolution is progressively reduced at higher frequencies. Spectrograms using the Bark scale represent the psychoacoustical frequency spacing of the inner ear and can be interpreted in terms of perceptual relevant spectral frequency distribution.


The transformation of the frequency axis into Bark scale and the extraction of irrelevant spectral components from the signal creates a so-called Relevance-Spectrogram which contains those frequency components only which evoke neurophysiological activity (SPL-Ecxess). It represents the signal associated to the neural excitation pattern in the auditory nerve, containing the relevant information parameters for the processing at higher neural levels. Thus the musical interpretation of spectrograms is highly facilitated as irrelevant signal parts can not show up. Moreover by applying an categorized intensity detection procedure (a concept of overmasking) the most prominent spectral peaks of the signal are extracted and figure-background discrimination can be obtained ( Deutsch \& Noll, 1993). This enables the listener to follow the leading voice without interference of the background signal in many cases.


The perception of pitch of complex tones has been a topic discussed extensively in psychoacoustics since the well known controversy beween Hermann von Helholtz and Georg Simon Ohm on one side and August Seebeck on the other. The problem, which is still an important question in hearing theories, started from Seebecks observation that the pitch of a complex tone with a missing fundamental still remains at the pitch level of the fundamental frequency. Ohms acoustic law followed Fouriers theorem and stated in contrary, pitches of frequencies which existe objectively (as components of a complex tone) can be heard only. Ohms acoustical law strongly supported Helmholtzs hearing theory according to which the partials of a complex tone are distributed along the basilar membrane (place theory) and resonance is responsible {Note: Helmholtzs experimental setup consisted mainly in resonators, he invented). His acoustical sources have been tuning folks. Seebeck used an acoustic siren, blowing air against the holes of a turning disk. By proper spacing of the holes a complex tone is produced without its fundamental frequency. for the mechanical stimulation of the hair cells. He explained Seebecks missing fundamental phenomenon by arguing nonlinearities in the inner ear would evoke the low frequency pitch, creating an objective product of nonlinearity (difference tone or combination tone between the higher harmonics) at the place of the fundamental frequency.

Modern pitch theory is based on the results of Georg von Bekesys and J. F. Schoutens work. Both have stimulated the research on pitch perception for about 50 years. Bekesys travelling wave theory is strongly supported by physiological experiments (Bekesy, 1960) and Schoutens (1940) observations on the residue pitch made evident, that the ear works in both domains simultaneously: in the frequency domain by means of hydromechanics with a far then perfect result of a Fourier Transform and in the time domain where any onset or even a slight change in the regular vibration of the basilar membrane is detected.

Fianlly pitch has been defined as that attribute of an auditory sensation in terms of which sounds may be ordered on a scale extending from low to high. The unit of pitch was assigned the mel (ANSI S3.20-1973). Thus pitch depends primarily upon the frequency of the sound stimulus, but it also depends upon the sound pressure and the waveform on the stimulus. The pitch of a sound may be described by the frequency or frequency level of that pure tone having a specified sound pressure level that is judged by subjects to have the same pitch.

The discussion on pitch perception came to an premature end when Terhardt (1974) published a model of pitch perception which includes both, the virtual pitch and the spectral pitch. He applied the concept of Gestalt perception, which in musicology frequently is understood to describe sequential melody contours only, on simultaneous sounding partials of a single complex tone. This enables the listener to still perceive the complex tone as a whole even when prominent components are missing (e.g. the fundamental frequency) or when their amplitude is as low that they can not contribute to pitch perception. Thus two general modes of pitch perception have to be encountered: the holistic mode integrating the partials of any complex tone to a good Gestalt, evoking virtual pitches and the analytic mode, focussing more on the spectral components of the sound and isolating individual partials of the complex tone as it is described by the concept of spectral pitch.

The following conclusions for the today work in pitch perception and music transcription have to be drawn:

  • the pitch of a complex tone very likely may be ambiguous,
  • pitch matches have therefore to be done with sinusoids only,
  • spectral pitch and virtual pitch may exist in between the same individuum, responding to the same sound, dependent upon subjective experiences,
  • musical theories of melody and counterpart introduce interpretative framework which not necessarily must correspond with perception.

Example 1: Highland Bagpipe

In the case of drone polyphony at least two psychoacoustical phenomena are generally relevant: masking and interference; the special characteristic of the drone sound is given by its relative stationarity in pitch and timbre throughout the total duration of the musical piece or a part of it, enabling melody tones to interfer with related spectral components of the drone. The following example is taken from a pibroch played on a Piob Mhor (highland bagpipe, Vienna Phonogramm Archive, Tape 17979, J. Brune, 1973). The key of the pipe chanter is usually spoken as A. The two tenor drones are tuned to the octave below the A of the chanter and the bass drone sounds an octave lower still ( Mac Neill, S. & Richardson, 1987). In our example the frequency value of /A/ is 116 Hz. The drone pipes produce a harmonic amplitude spectrum up to 7 kHz. Some partials show slow beats appearantly according to the slight mistuning of both tenor pipes. The ornamental sections of the sound probe are of equal overall duration (820 ms), whereas the sustained melody tones vary in duration from 1920 to 2830 ms. Interference is given mainly between the 4th, 5th, 6th and 8th harmonic of the drone and 1st harmonic of the sustained melody tones (/a3/, /c4 sharp/, /e4/, /a5/) depending upon their amplitude relation.

Spectrogram: Piob Mhor (highland bagpipe, Vienna Phonogramm Archive, Tape B17979, J. Brune, 1973). Spectrogram unprocessed.
Piob Mhor: according to the irrelevance-threshold signal processed, all spectral components below the masked threshold have been extracted. Approximately 67% of the weaker FFT-amplitudes have been set to zero.

Piob Mhor: difference signal, 67\% of the weaker amplitudes represent the signal below the masked threshold (irrelevance threshold). After being extracted from the original signal these components can be made audible again. The superposition of this spectrogram and the 2nd exactly produces the first spectrogram as well as the difference signal + irrelevance corrected signal = original..
Generally the sustained longer chanter (melody) pipe tones interfere (11s to 16s) with higher harmonics of drone tones, alternating with notes having no interference with the drone (see 8s to 11s) and short melody tones constituing the melismes (at 2s to 8s, 14s). The occurence of beats at each 2nd harmonic of the drone spectrum indicates beating between the two tenor drone pipes with a frequency difference of 0.85 Hz. The beating between the 2nd and the 4th harmonic of the drone with a rate of approximately 1.7 Hz is not of most perceptual importance. This beating does not effect the overall drone sound dominantely. Perceptually more relevant is the beating between the partials of the drone and sustained melody tones seen at 2.6s to 6s, 11s to 13s etc.

The interference of spectral components of both, the drone and the melody tones can be observed already on the spectrogram (fig. 1). Its perceptual relevance as indicated above can be seen in the relevance-spectrogram (fig. 2) from which the masked components of the signal have been removed. What happens to the signal when the masked threshold has been computed is demonstrated in the difference signal (fig. 3). From the lower harmonics of the drone sound, a2 and a3 are not affected by masking, as well as the 6th harmonic (e5). This results in a continous prominence of the fundamental and the fifth of the drone, the first corresponding to the basic tone of the melody, the second corresponding to the dominant tone of the melody. This fact has been mentioned already by Collinson (1970:167); Brune (1981:48) and MacNeill & Richardson (1987:32) but they all explained it by focussing on a strong 3rd harmonic of the bass drone. In contrary the example currently under investigation shows a very week 3rd harmonic of the bass drone and a strong, almost unmasked 3rd harmonic of the tenor pipes.

Several harmonics of the chanter pipes are stroger than the drone and consequently mask their neighbouring partials of the drone. The first partial of a4 of the chanter masks e4 and c-sharp5 of the drone sound and the first partial of e5 of the chanter masks c-sharp and g of the drone sound; whereas the sustained melody tones c-sharp5 and f-sharp5 themselves are partially masked by the harmonics of the drone sound. Taken together, the results of these observations provide psychoacoustical evidence (1) for the characteristic hierarchical structure given by the fifth a-e of the melody, which is strongly supported by the masking phenomenon. (2) The continuous sounding drone enlarges the overall frequency range downward, anchoring the melody into the tonal space.

Example 2: Bulgarian Multi-Part Song

The next example (fig.4 to 6) shows the role of roughness and frequency fluctuations (tremolo) as characteristics of a diaphonic type of Bulgarian multi-part singing (Messner, 1980:passim; Brandl, 1992; Födermayr & Deutsch, 1992:381-384). Masking has no effect in the region of the fundamental frequencies, even at the strongest partials (2 and 4) weak masking can be observed only. It does not influence the constituting elements of the sounds. Thus the partials of the individual voices interact with their full objective existent amplitudes. Throughout the whole piece a characteristic interval between two voices is produced, fairly constant with a width of three quarters of a whole tone. The resulting frequency differences between the fundamental frequencies are in the range of 30 Hz, evoking the sensation of roughness. Even when strong tremolo appears in Tressene figures, the average frequency difference remains close to 150 cents. Generally start and target points of exclamations fall on frequency values of the characteristic interval. The rate of the tremolo ranges between approximately 4 and 8 fluctuations /s which is known close to the ears maximum of sensitivity to frequency modulation.

Long term spectrogram of Bulgarian multi-part song: Balkanton BHA 2067, II 6. The duration of the piece is 39s. The spectrogram shows the segmentation of the song in  3 x 3 parts of equal duration.

Segment No. 3 (8s – 13s) of Bulgarian multi-part song: Balkanton BHA 2067, II 6. The spectrogram shows the characterstic interval of 150 Cents, several exclamations and two tremolo of 8 and 4 Hz fluctuation rate

Example 3: Epic Chant, Gujarat

The sound of the drone instrument ( Tharisar, Födermayr, 1968) is characterized by a single pitched (233 Hz) harmonic spectrum with decreasing amplitudes. The recitation as well as the sung parts follow the fundamental frequency of the drone sound with distinct variations. Short quasi-stationary tones of the recitation have an ambitus up to several whole tones using the fundamental frequency of the drone as midfrequency value, those of the sung parts are asymmetric and clother to the drone frequency with intervals downwards to a semi tone and upwards to a third. The drone implements a tonal function as finalis of the song. Roughness is produced during the sung parts only due to the interference of the drone and sustained voiced tones.

Long term spectrogram: Epic Chant of the Kunkana, Gujarat (PhA B 12125). The first 3s of the sound example show the drone isolated, followed by drone and recitation (3s – 15.5s) and sung part segments (15.5s – 30s). This example demonstrates the special kind of voicing during the parlando up to the first half duration of the sound segment displayed (up to 15s) and the song section with melodic lines closely related to the drone tones. The drone is given by a friction idiophone (Tharisar).

Epic Chant of the Kunkana, sung part segment, duration 3.5 s. The asymetry of the sung part in relation to the drone frequency can easily be detected from the first and 2nd harmonic.

Example 4: Lullaby in Yodel-technic, Bangombe Pygmies

The interdependence of pitch and timbre has been pointed out already in the section on pitch perception. The Yodel-technique of the Bangombe Pygmies elicitates both different modes of pitch perception: virtual pitch and spectral pitch. Two female voices exhibit the following variations:

  • tone to tone change of voice register: chest – falsetto
  • no isoparametric tone sequences with register change
  • unisono with different register: upper voice chest, lower voice falsetto
  • tone to tone vowel quality change (first and second vowel formant effect), upper voice: vowel /a/ chest, lower voice vowel /i/ falsetto, vowels /a/, /ae/ chest voice

The interaction between pitch, vowel quality and register change causes selective amplification of partials in the area of the vowel formant peak frequency, in the range of the first or 2ndnd partial of the female voices (633 Hz). The harmonics are sufficiently spaced apart to be resolved by the ear, producing virtual as well as spectral pitches. Whenever the fundamental frequency is significantly weaker as the 2ndnd harmonic, spectral pitch can be perceived by the analytic type of listeners. At will the perception can be focussed on the fundamental again and a holistic type of listening occurs.

Lullaby of Bangombe pygmy women (PhA B10840 G. Kubik, 1965): the peak amplitude contour of the solo part shows the A-B-A pattern of fundamental /e5-flat/ – 2nd harmonic /b4-flat/ – fundamental /e5-flat/ and so on. Falsetto tones are marked in diamonds. The inherent pattern of the upper voice is indicated, starting at 114 s.

The perceptual pitch ambiguity can best be described on the basis of the spectrogram: the peak amplitude of the beginning solo part shows the A-B-A pattern of fundamental /e-flat/ – 2ndnd harmonic /b-flat/ – fundamental /e-flat/ etc. According to the virtual pitch perception /e5-flat/ /b4-flat/ /e5-flat/ has to be perceived whereas subjects following the sepctral pitch hear /e5-flat/ /b5-flat/ /e5-flat/. The spectrogramm clearly shows the fundamental frequency contour. The phenomenon described has been addressed by a number of investigators and in detail by Albrecht (1972). By further analysing the spectrogram a melo-rhythmic pattern in the upper voice (120s to 134s) can be identified; it is aready seen as inherent pattern in the beginning of the solo part starting from the third phrase. The perception of the inherent pattern can be explained by the similarity of timbre of neighbouring tones, the falsetto /f/ and /e-flat/ of phase 3 and the chest voice /c/ /b-flat/ as well as /b-flat/ /g/ of phrase 4. Approximately at location 115s (marked with an asterix) /b4-flat/ is perceived instead of /b5-flat/ which exists objectively. This octave error helps to obtain the continuity of the melody in order to support the good Gestalt. Finally even in parts both voices are in unisono the distinction between the individual voices can easily maintained due to the predominant difference ebtween the chest and falsetto register.

In conclusion and for further studies on that line the spectrogram has been proved as an indespensible basis for the evaluation of complex tonal patterns as represented by the example described.

Lullaby of Bangombe pygmy women: duet. The arrows pointing downward indicate spectral components associated witjh the upper voice. Arrows pointing upward indicate those belonging to lower voice.

continuation of previous spectrogram.

Example 5: Overtone Singing: Tran Quang Hai

Overtone singing of the nature given by mongolian and turk people (as well as by Tran Quang Hai’s reproductive performances) is characterized by (1) a sustained fundamental frequency contour and (2) a melody which is composed from harmonic overtones of that fundamental frequency. The overtone phenomenon has been recognized to be an acoustical factor of the special setting of resonances of the human vocal tract. It has been sufficiently explained by the acoustic theory of voice production (Fant, 1960). Moreover this example shows the coincidence of a production model and the corresponding perception model.

Tran Quang Hai: overtone singing, spectrogram.

The acoustic model of the speech production assumes the glottal spectrum as the primary source for voiced sounds and the vocal tract acting as a filter attached on it: the glottal spectrum consists of a series of harmonics produced by glottal air pulses described in a model according to the myoelastic theory of {Berg (1957)} which has been accepted widely. The slope of the {\em source spectrum} depends on the shape of the individual closing and opening of the vocal folds during one fundamental period; a glottal waveform with more sudden closures produces stronger high frequency harmonics and a sharper timbre or voice quality. The fundamental frequency of the voice is determined by the repetition rate of the glottal pulses which is controlled (1) by the laryngeal musculature affecting the tension and the mass distribution of the vocal chords and (2) by changes of subglottal pressure. Decreased subglottal pressure, reduced mass of the vocal chords and increased tension raise the fundamental frequency.

The tube of the human vocal tract with a length of approximately 17,5 cm is attached on top of the laryngeal section. Its cross section can be changed to wider and narrower constrictions by the walls of the pharynx, the tongue, the jaw opening and the lips. The formant frequencies of vowels are related to the length of the tube and its shape. They represent the resonance frequencies of the vocal tract in non nasalized sounds. When the nasal tract is coupled on, by lowering the soft palate, the amplitude of the vowel formants decreases and a more complex resonace/antiresonace behavior of the vocal tract can be observed. The special setting of overtone singing suppresses the formant frequencies of the normal voice and emphasizes a very small frequency range, as narrow that one partial is amplified only. The result is shown in the spectrograms (fig. 12,13); the fundamental frequency is continuously sounding on one sustained low pitch and the melody is controlled by proper changing of the main resonace frequency. Thus overtone melodies can be played by picking out individual harmonics from the complex tone of the glottal pulse.

Tran Quang Hai: overtone singing. The output of the model of voice production (Linear Prediction Coding, 24 coefficients) extracts the first overtone of the fundamental frequency and the harmonics with the peak amplitude. The overtone melody is produced by setting the vocal tract main resonances accordingly.

The point to be emphasized is that in this case a coincidence of a (voice) production model and the associated perception model can be stablished. Nevertheless it has to be examined from case to case which aspects of the production model can be considered as significant for the perception.


Although these examples are of demonstrative nature only they are consistent with the general concept of introducing acoustics, physiology and psychoacoustics into the process of musical analysis. We have excluded for reasons not outranging the size of this contribution only the very challenging approach of {\em Analysis by Synthesis} as it has been applied in speech research since the beginning of vocoder techniques. Resynthesis of musical sounds can be extremly forceful when appropriate sound analysis data are available. As long as the physical parameters of musical sounds have not been evaluated upon their psychoacoustical effects, the perceptual relevance of individual components of complex sounds can be determined by trial and error only. The introduction of perceptual concepts in the analysis of music yields to results typically much better than would be obtained from acoustics alone.


Our special thanks to Prof. Dr. Kreysig for reading the english version of this paper and improving its style.


Albrecht, Erla M. (1972): Das akustische Residuum. Phil. Diss. Univ. Wien.

ANSI S3.20-1973}: American National Standard; Psychoacoustical Terminology. New York.

Bekesy, Georg von (1960): Experiments in Hearing. New York: McGraw-Hill.

Berg, Jw.van den, J.T. Zantema, and P. Doorenbal, Jr. (1957): On the Air Resistance and the Bernoulli Effect of the Human Larynx. Journal
of the Acoustical Society of America, Vol.29, No.5,p626-631.

Brandl, Rudolf M. (1992): Die Schwebungsdiaphonie im Epiros und verwandte Stile im Lichte der Psychoakustik, in: Schumacher, R. (Hg): von der Vielfalt musikalischer Kultur. Anif 1992:43-79.

Brune, John A. (1981): Piob Mhor und andere britisch-irische Sackpfeifen, in: Schriften zur Volksmusik (Wien, 1981) 41-58.

Collinson, Francis (1970): The traditional and national music of Scotland. London.

Deutsch, W.A. & Anton Noll  (1993): Simulation auditorischer Signaltrennung in komplexen musikalischen Signalen durch Übermaskierung. DAGA, Fortschritte der Akustik.

Fant, Gunnar (1970): Acoustic theory of speech production. Mouton, The Hague; 2nd edition.

Fletcher, Harvey (1929): Speech and Hearing. D. van Nostrand Company, Inc. New York.

Fletcher, Harvey  (1953): Speech and Hearing in Communication. D. van Nostrand Company, Inc. New York.

Födermayr Franz (1968): Über ein indisches Reibidiophon und die Drone-Praxis, in: Mitteilungen der Anthropologischen Gesellschaft in Wien, 98:75-79.

Födermayr Franz & Werner A. Deutsch (1992): Musik als geistes- und naturwissenschaftliches Problem, in: Gratzer, W. & A. Lindmayr (Hg.), De editione musices. Laaber, 377-389.

Graf, Walter (1963/64): Moderne Klanganalyse und wissenschaftliche Anwendung, in: Schriften des Vereins zur Verbreitung naturwissenschaftlicher Kenntnisse in Wien, 104:43-66. Neudruck in Graf (1980).

Graf, Walter (1980): Vergleichende Musikwissenschaft. Ausgewählte Aufsätze, hg. von F. Födermayr, Wien-Föhrenau.

Helmholtz, Hermann von L.F.  (1863):  Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg & Sohn, Braunschweig; 6. Aufl. 1913.

Koenig, Walter K., H.K. Dunn, L.Y. Lacey (1946): The Sound Spectrograph. Journal of the Acoustical Society of America, Vol. 18, p. 19-49.

Mac Neill, Seumas and Frank Richardson (1987): Piobreachd and its interpretation. Edinburgh; p.32.

Messner, Gerald F. (1980): Die Schwebungsdiaphonie in Bistrica Tutzing.

Ohm, Georg, Simon (1843): Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Annalen der Physik und Chemie, 59, pp. 513-565.

Potter Ralph K., George A. Kopp, Harriet C. Green (1947): Visible Speech. D.van Nostrand Company Inc. New York.

Schouten, J.F. (1940): The perception of subjective tones Proc. Kon. Nederl. Akad. Wetensch. 41, 1086-1093.

Seebeck, A. (1841):  Beobachtungen über einige Bedingungen zur Entstehung von Tönen.  Annalen der Physik und Chemie, 53; 417-436.

Seebeck, A. (1843): Über die Sirene. Annalen der Physik und Chemie, 60; 449-487.

Terhardt, Ernst (1972): Zur Tonhöhenwahrnehmung von Klängen. II. Ein Funktionsschema. Acustica, Vol 26/4, 187-199.

Zwicker, Eberhard and E. Terhardt (1980): Analytical expression for critical-band rate and critical bandwidth as a function of frequency. JournaL of the.Acoust.Soc.Am. 68(5), Nov. 1980; 1523-1525.


Stratos – Dean Frenkel


Stratos – Dean Frenkel

Published on May 30, 2015

Harmonic vocalist Dean Frenkel with the Bendigo Youth Choir perform a composition by Dean Frenkel. The music comes from a CD published by Move Records entitled “cosmosis”. The album is an exploration of Dean’s throat singing accompanied by various other insterments. More information here:…

PHOTOS BY MATTEO GELATTI /TRAN QUANG HAI LIVE SHOW /RMDODS 2016 Rassegna di Musica Diversa “Omaggio a Demetrio Stratos”.


13640910_979301962187460_7052104919202568325_o13612364_979301758854147_8162243829866271056_n13620904_979301955520794_1511109299790035404_n13580557_979303205520669_3906877836557561298_o13590389_979301738854149_9016082551436892042_n13599768_979301938854129_1657984070606476470_n13599874_979301788854144_2561992909025065528_n13599874_979301788854144_2561992909025065528_n13606532_979302238854099_6615677694810940257_n17.06.16 ODS CENTO.jpg

Tran Quang Hai Live show!

Laboratorio Sperimentazione e uso Inconvenzionale della Voce – RMDODS 2016
Rassegna di Musica Diversa “Omaggio a Demetrio Stratos”.

Foto © Matteo Gelatti Photography
Tutti i diritti riservati •

TRAN QUANG HAI : Le Chant diphonique Xöömij : origine, styles et phonation


Le Chant diphonique Xöömij : origine, styles et phonation


Trân Quang Hai (CNRS, France)


Comme les précédents empires de nomades d’Asie Centrale, tel celui des Huns avc Attila, ils commencèrent par soumettre les peuples voisins avant de se lancer à la conquête du monde . Déferlants à maintes reprises sur l’Asie, le Moyen Orient, l’Europe au Moyen Age, et redoutés comme un terrible fléau de Dieu, les conquérants mongols , avec à leur tête le plus fameux de leurs chef, GENGIS KHAN, furent tristement réputés pour semer la terreur et le désastre sur leur passage. Mais ils sont bien moins connus pour leur sens aigu de l’organisation, leur discipline rigoureuse, qui n’ont d’ailleurs pas empêché la désagrégation progressive de l’empire après la mort de Gengis Khan . De cet empire éphémère, la mémoire historique commune ne semble n’avoir retenu, et à juste titre, que le souvenir d’une violenc dévastatrice, au détriment de cette paradoxale tolérance relilieuse srupuleuse et exemplaire qui régnait à la cour du Grand Khan .


De cette époque, subsistent les témoignages capitaux de voyageurs, de marchands, d’ambassadeurs de différents pays dont, en Europe, celui de Jean du Plan Carpin, envoyé par le Pape Innocent IV en 1246 aurpès de Gengis Khan ; ensuite celui du frère Guillaume de Rubruck, envoyé par Saint Louis en 1253 ; et , celui du marchant vénitien Marco Polo qui resta 16 ans, de 1275 à 1291, au service du Khan Kubilai, petit fils de Gengis Khan et fondateur de la dynastie Yuan de Chine . Malheureusement, dans les récits de ces grands hommes, peu de renseignements concernent la musique et les musiciens, dont on avait surtout signalé des chants de guierriers et des instruments de musique originaux employés à la cour des Khans . C’est surtout grâce à l’ “ Histoire Secrète des Mongols ”, chronique impériale de cette période, véritable monument de littérature mongole que nous proviennent des informations intéressante sur l’efficacité des chants chamaniques et sur le rôle important des bardes-devins dans le sphère du politique. Genis Khan, lui même, n’hésitait pas à attribuer un rôle politique à son musicien préféré Argasun, de même que le gouverneur mongol de la Perse, Arghun Khan, avait envoyé en 1289 un barde comme ambassadeur auprès de Philippe lle Bel . Ces bardes ou rhapsodes, devenus rares dans la Mongolie contemporaine, sont les derniers détenteurs d’un art séculaire, mais vivant, parvenu jusqu’à nous par la tradition orale .


Les Mongols n’utilisaient pas d’écriture musicale pour fixer la mélodie de leurs chants . Cela ne signifie pas, pour autant, qu’il n’y ait pas eu, au cours de l’histoire, de tentative de description de la musique mongole . Très tôt, en effet, des théoriciens de pays conquis se sont intéressés à cette musique et quelques innformations, datant de la fin du XIIIème et début du XIVè siècle, ont été notées en persan, probablement à Samarkand, par Al-Maragi. Dans un de ses manuscrits, il est fait mention de 9 mélodies ou modes mongols (jesun xög). Une autre source, d’origine chinoise, est fournie par Tao Zong Yi qui, au milieu du XIVème siècle, avait identifié 28 modes, de la période Yuan,. Cependant , il est difficile de se faire une idée claire sur la réalité musicalce donnée par ces modes, de même que de définir le lien qui les unit à la musique mongole traditionnelle d’aujourd’hui, fondamentalement pentatonique .


Plus tard, vers le milieu du XIIIème siècle, la religion bouddhique et le chergé lamaïque, étaient en plein essor en Mongolie . De même confession religieuse que les Tibétains, les Mongols avaient hérités de ceux ci leur notation musicale manuscrite de certaines cérémonies religieuses . Mais ce système de notation, de style neumatique, appelé dbjangs-jig en tibétain, janjeg (jan-jeg) en mogol, reste très imprécis et se présente plutôt comme d’un aide mémoire . Probablement poussés par le besoin de noter plus précisément la mélodie de certains chants religieux et aussi populaires, quelques lettrés mongols, dont Lusannorovsarav (1701-1768), suivi par Luvsandandarvancig (1776-1827) et Badamdorz (1830-1882) avait élaboré un système original de notation. En reproduisant sur un support écrit touts les cordes de la citharre oblongue jatga de cette époque, ils avaient ainsi défini le cadre d’une portée musicle à 10 lignes. Sinon le rythme, du moins les hauteurs pouvaient ainsi etre clairement notées.


Les premières transcriptions de musique mongole dans le système musical européen date du milieu XVIII ème siècle et furent réalisées par Gmelin au cours d’une expédition en Sibérie. Son recueil publié en 1742 contient notamment 4 chants de Mongols Burjat , de l’Empire russe . Une autre publication d’une quinzaine chants bar-jat sont dues, un siècle plus tard, en 1850, au missionnaire anglais Stallybrass, qui les nota de mémoire. Puis, les publications vont se multiplier et s’étoffer rapidemment. En 1880, Pozdnejev publie 60 chants mongols à Saint Peterbsburg ; en 1909, c’est au tourde Rudnev de proposer la notation de 24 chants populaire en 1915 . Le Père belge Van Osst publie un recueil, avec notation musicale, de chants des Mongols ordos de Mongolie Intérieure . Or, à cette époque, vont commencer les premier enregistrements de musique mongole, entre 1906 et 1916, par Anoxin lors d’une expédition de L’institut russe de Géographie en Mongolie occidentale. La collection se compose de 40 cylindres de cire. Ramstedt réalisa également à la même période, en janvier 1909, quelques enregistrements sur cylindre de cire ; ainsi que Vladimirtsov dont la colleciton comporte, pour la première fois, des fragments d’épopées : Bum Erdeni, Dajni-Kjurjul et Zangar, très célèbre ches les Mongols kalmuk


Depuis, la liste serait longue s’il fallait énumérer, avec risque d’oubli, tous les auteurs qui se sont, à différents niveaux, intéressés à la musique mongole, en réalisant soit des enregistrements , soit des recueils, ou encore des études, dont les plus sérieuses contributions réelleent disponibles nous sont dues notamment à Haslund Christensen et Emsheimer en 1943, à Kondrat’ev en 1970 et Smirnov également en 1970. Mais il serait injuste de sous estimer l’apport des chercheurs mongols qui, formés pour la plupart par l’Ecole des “ folkloristes ” russes, ont entrepris depuis 1970, l’édition de nombreux recueils de chants et de musique populaire. Les chercheurs de Mongolie Intérieure sont même allés jusqu’à éditer, parmi les nombreux recueils de chants populaires avec leur notation musicale, déjà en circulation. “ Cinq cents chants mongols ” en deux volumes, suivis par un recueil de “ Mille chants mongols ” en 5 volumes .


Parmi toute la richesse de l’art vocal des Mongols, qui ne se limite pas à des répertoires de chants populaires, un genre vocal bien singulier, a retenu plus particulièrement l’attention des chercheurs occidentaux depuis une trentaine d’années : le XOOMIJ ou chant diphonique. Mais le mystère du chant subsiste. Comment se fait il en effet, qu’un chanteur maîtrisant parfaitement cette technique, arrive à faire disparaître, par endroit, son bourdon vocal ? Cette acrobatie vocale si particulière est originaire de la chaîne montagneuse de l’Altaï, à l’Ouest de la Mongolie. Il représente l’un des trois volets d’une émission vocale, unique à cette région de Mongolie, placée très en arrière de la gorge et qui est commune à l’exécution du répertoire de chants épiques dans le style xajlax et à la pratique de la flûte verticale cuur .






Le chant diphonique est un genre vocal très étonnant et difficilement classable. Sorte de polyphonie à une voix, le chant se compose d’un bourdon continu et d’une ligne mélodique faite pas des harmoniques supérieurs du fondamental .


Depuis qu’il retient l’attention des spécialistes et des chercheurs, ce phénomène vocal a reçu un grand nombre de dénominations . En français, il est connu sous le nom quasi généralisé de “ chant diphonique ”. Mais il est appelé également “ chant biphonique ”, “ chant diphonique solo ”, même “ voix guimbarde ” “ voix dédoublée ”. Plus récemment est apparue une nouvelle expression “ chant harmonique ”, et plus tard “ chant de gorge ”.


Dans les ouvrages de langue anglaise, le terme de “ overtone singing ” s’est imposé sur celui de “ throat singing ”. Mais on trouve aussi “ two voiced songs with no word ”, tandis qu’en allemand il est surtout défini comme “ kehlgesang ”, “ rachengesang ” ou encore “ zweistimmingen sologesang ”

En russe, l’éventail des expressions rencontrée est auss étendu “ col’noe dvuxgolosnoe enie ”, “ gorlovogo penija ” qui ont été traduites en anglais par “ boule voice singing ” et “ larynx singing ” ; aussi “ sol’nogo dvuxgolosnogo ” “ gorlovogo penija ” ou bien “ sol’noe mnogoglosnoe overtonovoe enis ” et “ gortannoe penie ”


Le terme mongol qui désigne ce genre vocal est XOOMIJ , littéralement “ gorge, pharynx ”. XOOMIJLOKU signifie “ faire le xöömij, chanter diphoniquement ”, et XOOMIJCIN , chanteur de xöömij ” .


L’expression de “ voix guimbarde ” a été signalée par Trân Quang Hai. Selon Roberte Hamayon, le xöömij représente une imitation par voix seule de deux instruments : la flûte “ limbe ” et la guimbarde “ aman xuur ” . La question du rapprochement de la guimbarde et du xöömij rest fondamentale dans la mesure où la guimbarde est associée à des pratiques chamaniques car l’on sait que le chaman utilise sa voix de façon extraordinaire, avec des recherches de timbre intentionnel . Mais , jusqu’à présent aucun texte, aucun témoignage ne mentionne un chant exécutant un chant diphonique durant une séance chamanique.


Du point de vue musicologique, le jeu de la guimbarde ne peut être assimilé à celui du xöömij et inversement . Ce sont des technique de jeu différente et la maîtrise de l’une ne donne as aussi facilement accès à l’autre, bien qu’il est toutefois plus difficile de pratiquer le xöömij que la guimbarde . Par contr, le rapport entre la guimbarde et un type d’amission vocale diphonique pratiquée chez les Bashkirs, l’ “ uzlau ” a été suggéré par Lebdinski . L’auteur ajoute que le terme bashkir pour la guimbarde est “ kurai ” et, pour le chant diphonique “ tamak kurai ” , que l’on serait tenté de traduire par “ guimbarde laryngale ” . Cette métahore présenterait un intérêt certain dans la mesure où elle met l’accent sur l’aspect instrumental de la voix dans ce genre vocal .


Cette comparaison avec la guimbarde a été ensuite reprise pour le xöömij mongol par Vargyas, mais au niveau de la fonction du résonateur buccal dans la formation des harmoniques.


Les Touvins d’Asie Centrale connaissent aussi la guimbarde et différents types démissions vocales diphoniques (sygyt, khoomei, borbannadyr, ezengileer, et kargyraa) . Ces émissions se différencient entre elles selon des critères musicaux, tels que la hauteur de la tonique, la structure mélodique du sifflement harmonique, le mode d’introduction du chant . Les Touvins regroupent l’ensemble de ces techniques sous le vocable KHOOMEI . Mais contrairement au xöömij mongol, le KHOOMEI des Touvins exhibe une nette tendance à matérialiser un marquage rythmique par des pulsations glottales, qui rappellent le jeu de la guimbarde . Rien de tel dans le xöömij mongol.




L’origine du xöömij est encore aujourd’hui une énigme . Est il lié à des pratiques chamaniques dans lesquelles il puiserait sa source ? Ou bien n’est il que pur divertissement musical, dénué de connotations religieuses, comme l’affirment souvent les chanteurs mongols ?


Il est clair que le chant diphonique est peu diffusé en Mongolie et que sa pratique reste rare et surtout régionale . De plus, il existe différents niveaux d’acquisition de cette technique vocale . Ce qui nous appelons ici xöömij correspond à la maîtrise la plus achevée de cet art vocal qui apparaît comme une sorte de sifflement laryngal diphonique .


Ceux qui pratiquent ce type de chant sont des Mongols “ xals ” pratiquement tous originaires de l’Ouest du pays, et plus précisément de la province de Tchandmani . Cependant, on rencontre aussi la pratique u xöömij dans la région de Uvs, par les chanteurs E. Tojvgoo et Z.Sundui notamment . Ils commencent à apprendre le xöömij très tôt, en général vers l’âge de 7 ou 8 ans dans le cadre d’un enseignement institutionnel, mais tout simplement par tradition orale, dans le décor naturel de la steppe.


Au début de l’apprentissage, les enfants commencent à émettre sur les voyelles mongoles un timbre provenant de l’arrière gorge. Puis ils font avec leur main droite ou gauche des mouvements secs et réguliers devant leur bouche entr’ouverte. Ces mouvements ont pour but de renforcer les harmoniques émises et, ainsi, d’aider à l’émission diphonique . Cette technique particulière s’appelle “ baiybaldaqu ” (information fournie par le chanteur Yavgan d’Oulan Bator)


Le musicologue mongol Badraa a recueilli une légende d’origine du xöömij dans laquelle il est question d’une rivière montagneuse .

“ L’Ijven dont la chute d’eau pure et cristalline du haut d’une falaise abrupte vient frapper les rochers en contre-bas et produire ainsi des sons très mélodieux . C’est en essayant d’imiter cette musique que les gens ont appris à chant le xöömij ” . Il cite une autre légende dans laquelle l’Ijven n’est pas une simple rivière mais “ la fille du Maître de l’Altaï ”.

“ L’Ijven voulait rejoindre le lac Zaiysan mais ce dernier refusa de la recevoir, prétextant que ces eaux n’étaient pas profondes. Alors, l’Ijven offensée, alla trouver son père Altai lui demandant une eau plus abondante pour accomplir son désir . Son père bienveillant lui attribua 5 affluents grâce auxquels ell put enfin se jeter dans le lac ”




Traditionnellement il existe 6 styles de xöömij :

1.Amany xöömij : xöömij de bouche

2.Xamaryn xöömij : xöömij de nez

3.Xolgojn xöömij : xöömij de gorge

4.Ceezijn xöömij : xöömij de poitrine

5.Xondij xöömij ou Xevlijn xöömij : xöömij profond

6.Xarkiraa xöömij : xöömij grue


Ce système classificatoire s’opère autour de zone de vibrations et de résonance, qui attribue une couleur timbrique spécifique à chaque type d’émission .



Le rôle réduit des voyelles lors de la production de sifflement diphonique montre que les résonateurs, bien qu’ils aient leur qualité timbrique propre et qu’ils agissent comme de véritalbes filtres, réduisants ou renforçants des sons harmoniques, ne sont pas les seuls éléments participant à la mise en place de la seconde voix . Le problème semble se situer davantage dans la partie antérieure de l’appareil phonatoire, au niveau du larynx, c’est à dire de la production de la voix. Le larynx a une fonction respiratoire, phonatoire et sphinctérienne ou de valve . Il est formé par deux sphincters glottiques appelés “ cordes vocales ” et “ fausses cordes vocales ”. Il s’agit en réalité de plis musculaires tapissés de muqueuse qui réalisent des mouvement de rapprochement et d’éloignement très rapides .


Le chanteur lui même localise la production du sifflement diphonique au niveau du larynx, lorsqu’il parle de “ resserrement ”. Il est donc très intéressant de pouvoir étudier les comportements phonatoire glottiques qui produisent ce type d’émission.


La méthode la plus simple d’observation du larynx consiste à utiliser le miroir laryngoscopique de Garcia . Garcia était à la fois chanteur et professeur de chant qui , en 1855, réussit à voir le larynx grâce à un petit miroir de dentiste correctement orienté sur la luette, et en l’éclairant.


En inspiration ou respiration, les cordes vocales, qui sont de couleur blanche et nacrée, se séparent et laissent entrevoir la trachée. Au moment de l’émission phonatoire, les cordes se ressèrent et se mettent en vibration l’une contre l’autre. Tout ce mécanisme est commandé par le cerveau et contrôlé par les centre de l’aution. On a aussi observé que la dimension des cordes vocales varie avec l’âge et en fonction du sexe. De 14mm à 21mm pour les femmes, elles passent de 18 à 25 mm pour les hommes .


La question est de savoir comment se comporte l’ensemble du larynx lors d’une émission diphonique. Or, dès 1975, des recherches furent entreprises par le musicologue CERNOV et le phoniâtre MASLOV sur le chant des Touvins, comparable, sur le plan des études spectographiques, aux productions du chanteur SUNDUI . Cernov et Maslov mentionnent les résultats danalyses acoustiques réalisées par Banin et Lozkin sur le chant diphonique des Touvins. D’après ces derniers, le bourdon vocal peut se situer dans une fourchette de 60 à 220 Hz et le sifflement (ou la voix formantique) entre 2000 et 3000 Hz . A titre de comparaison, le chanteur Sundui émet un bourdon entre 78 et 156Hz, le sifflement laryngal entre 1400 et 2480 Hz .

Ces chercheurs utilisèrent différentes méthodes d’investigation : radiographie aux rayons X, tomographie, cinématographie et laryngoscopie indirecte. Les résultats de leurs travaux parurent sous forme de plusieurs articles en russe . Les examens laryngoscopiques, répétés sur plusieurs chanteurs touvins (parmi lesquels D.Otchir, V. Soyan et V. Mongoush en 1976), montrèrent que leur appareil vocal ne comporte pas d’anormalité de caractère anatomo-physiologique. Cependant, au moment de l’émission diphonique, les chercheurs ont observé le phénomène suivant :

1963 L’épiglotte et le cartilage aryténoïde se resserrent plus étroitement

1964 Les fausses cordes vocale (ou bandes ventriculaires) particulièrement développées musculairement, se rejoignent et forment un étroit canal dont l’ouverture, de 1,5 à 2mm est entourée de mucosité sur le dessus .

L’ensemble du larynx, en émission diphonique, se contracte : le pied de l’épiglotte s’abaisse vers le cartilage aryténoïde et les bandes ventriculaires se rejoignent ne laissant qu’un étroit passage circulaire. Les cordes vocales deviennent, du coup, invisibles. Pour observer leur fonctionnement, une tomographie frontale aux rayons X fut réalisée et a permis de constater que les cordes vocales restent accolées et les bandes ventriculaires se contractent pour former un étroit couloir.

Cette tomographie permet nettement de voir que, lors d’une émission de chant diphonique, le larynx réduit le passage de la colonne d’air à deux endroits : d’abord au niveau des cordes vocales qui produisent le son fondamental, puis les bandes ventriculaires se resserrent et créent une cavité de résonance dans la chambre des ventricules de Morgagni d’où sort un sifflement de haute fréquence sur une harmonique du son fondamental ; le registre de ce sifflement étant en relation étroite avec le volume de cette chambre. Le sifflement est ensuite modulé par les qualités résonantes du pharynx, de la cavité buccale et de la région nasale .

Cela ne signifie pas que le dispositif ainsi mis en place reste statique. Tout se passe comme si le chanteur faisait disparaître son bourdon à certains endroits par l’émission d’un sifflement laryngal. Cette disparition du son fondamental, lisible sur les sonagrammes, pose le problème de la source sonore. Les fausses cordes vocales sont elles à ce point resserrées qu’elles peuvent se substituer aux cordes vocales et produire du son par sifflement ? ou bien forment elles une sorte de filtre puissant capable de filtrer jusqu’au son fondamental des cordes vocales ?

Pour les phoniatres russes, la source principale provient des cordes vocales, mais il aurait été tout de même intéressant d’en avoir la confirmation par une laryngoscopie qui aurait eu le mérite de montrer si les cordes vocales vibrent réellement lors de l’émission du sifflement laryngal, particulièrement dans ces passages où le bourdon disparaît.


Un bref aperçu sur le chant diphonique mongol pour montrer qu’il y a une lègère différence entre les styles mongols et ceux des Touvins .




AALTO, P. “ The Music of the Mongols : an Introduction ”, Ulralic and

1965 Altaic Seires, vol.23, Indiana University Publications

BADRAX, G : “ Mongolyn xögzmijn tüüxees ”, Studia Ethnographia, tome 1

1960 Fasc 3, 106p, Oulan Bator.

BATZENGEL : “ Urtyn Duu, Xöömij and Morin Xuur ” , Musical Voices of

1978 Asia, part.1, Edité par R. Emmert et Y Minegushi, Heibonsha

Ltd, : 52-53, Tokyo.

DESJACQUES, Alain : “ Une considération phonétique sur quelques

techniques vocales diphoniques mongoles ”, Bull. du Centre d’Etudes de Musique Orientale, n° 31 : 46-54, Paris.

DESJACQUES , Alain : Chants de l’Altai Mongol, thèse soutenue à

1992 l’Université de Paris IV-Sorbonne en 1992, 389 p., une cassette audio, Paris

HARVILAHTI, L. et KASKINEN, H. “ On the application possibilities of

1983 overtone singing ”, Suomen Antropologi i Finland n° 4 : 249-255, Helsinki

TRAN QUANG HAI & GUILOU, D. 1980: “Original Research and Acoustical Analysis in

Connection with the Xöömij Style of Biphonic Singing”,Musical Voices of Asia : 162-

173, The Japan Foundation (éd), Heibonsha Ltd, Tokyo.

TRAN QUANG HAI & ZEMP,Hugo. 1991: “Recherches expérimentales sur le chant

diphonique”, Cahiers de Musiques traditionnelles : VOIX vol.4: 27-68, Ateliers

d’ethnomusicologie /AIMP, Genève.

TRAN QUANG HAI, 1975: “Technique de la voix chantée mongole: xöömij”,Bulletin du

CEMO (14 & 15): 32-36, Paris.

TRAN QUANG HAI, 1983: “Note à propos du chant diphonique mongol”, Catalogue de l’exposition Mongolie-Mongolie, Musée de l’Homme (éd), Paris.

TRAN QUANG HAI, 1989: “Réalisation du chant diphonique”, dossier n°1 Le Chant

diphonique : 15-16, Institut de la Voix, Limoges.

TRAN QUANG HAI, 1990: “Les Musiques vocales”, L’Esprit des Voix, C.Alès (éd), La

Pensée Sauvage: 43-52, Grenoble.

TRAN QUANG HAI, 1991: “New Experimental About the Overtone Singing Style”,

(Nouvelles Expérimentations sur le chant diphonique),Nouvelles Voies de la Voix, 1ère

partie, Bulletin d’adiophonologie 7(5&6): 607-618, Besançon.

TRAN QUANG HAI, 1991 : “ La voix dans les cultures extra-occidentales ”, La Voix dévoilée

: 164-186, Editions Romillat, Paris .

TRAN QUANG HAI, 1991 : “ Les différents styles de chant diphonique ”, Actes de

‘Universon : 45-52, Narbonne .

TRAN QUANG HAI, 1992 : “ Instruments traditionnels et musiques à bourdon : la voix

diphonique ”, Autour de l’instrument de musique, Actes du IIème Colloque

départemental d’éducation musicale en Seine et Marne, 1989 : 15-21, Melun .

TRAN QUANG HAI , 1992 : “ Pratique du chant dysphonique ou chant diphonique chez les

personnes âgées ”, 3ème Colloque d’Etude Clinique du Langage en Gériatrie : La voix

du sujet âgé. Rééducation orthophonique , 30 (171) : 299-311, Paris .

TRAN QUANG HAI, 1995: ” Le chant diphonique: description, historique, styles, aspect et

spectral”, EM, ANnuario degli Archivi di Etnomusicologia dell’Accademia Nazionale

di Santa Cecilia, 2:123-150, Rome.

TRAN QUANG HAI, 1997: “Recherches Introspectives sur le chant diphonique et leurs

applications”, Penser La Voix, (ed) La Licorne: 195-210, Poitiers.

TRAN QUANG HAI, 1997: ” Overtones in Central Asia and in South Africa(Xhosa Vocal

Styles), Confluences: Cross-Cultural Fusions in Music and Dance, Proceedings of the

First South African Music and Dance Conference and 15th Symposium on

Ethnomusicology: 422-432, (ed) Université de Cape Town, Afrique du Sud.

TRAN QUANG HAI, 1998: ” Survey of overtone singing style”, Die Ausdruckswelt der

Stimme, 1-Stuttgarter Stimmtage/ Horst Gunderman, Hüthig (éditeur): 77-83,


TRAN QUANG HAI, 1999: “Overtones used in Tibetan Buddhist Chanting and in Tuvin

Shamanism”, Ritual and Music, Lithuanian Academy of Music, Department of

Ethnomusicology (editeur): 129-136, Vilnius, Lithuanie

TRAN QUANG HAI, 2000 : “ Some Experimental and Introspective Researches on Xoomij

Overtone Singing ”, Proceedings WESTPRAC VII (3-5 octobre 2000), vol.1,

Université de Kumamoto : 593-598, Kumamoto, Japon .

TRAN QUANG HAI, 2001 : “ Voix d’autres cultures ”, Cinq Sens dans un Corps, 284 : 36-

37, Paris .

TRAN QUANG HAI, 2001 : “ Chant Diphonique ”, Science et Conscience 2 : 42-44,


TRAN QUANG HAI , 2002 : “ A la découverte du chant diphonique ”, Editions Symétrie,

avec 1 CD Romm, Lyon .

TRAN QUANG HAI, 2002 : “ New Experiments on Overtone Singing ”, Stimm-Kulturen, 3-Suttgarter Stimmtage 2000 : 65-70, edité par Röhrig Unversitätsverlag, Stuttgart





“Mongolie: Musique et Chants de tradition populaire” ,

GREM G 7511, Paris, France, 1986.

“Mongolie : Musique vocale et instrumentale” ,

Maison des Cultures du Monde, W 260009, collection INEDIT, Paris, France, 1989.

“Mongolian Music”,

Hungaroton, HCD 18013-14, collection UNESCO, Budapest, Hongrie, 1990.

“White Moon, traditional and popular music from Mongolia” ,

Pan Records, PAN 2010CD, Leiden, Hollande, 1992.

“Folk Music from Mongolia / Karakorum” ,

Hamburgisches Museum für Völkerkunde, Hambourg, Allemagne, 1993.

“Vocal & Instrumental of Mongolia” ,

Topic, World Series TSCD909, Londres, Grande Bretagne, 1994.

“Jargalant Altai/ Xöömii and other vocal and instrumental music from

Mongolia” ,

Pan Records PAN 2050CD, Ethnic Series, Leiden, Hollande, 1996

“ Virtuousos from the Mongol Plateau ”.

World Music Library. King Records. KICC 5177

“ Mongolie: Chamanes et Lamas (Shamans and Lamas) ”

Ocora Radio France C560059, Paris.

Mongolia: Living Music of the Steppes

“ Mongolia: Traditional Music ”.

UNESCO Auvidis D8207

AlienVoices – organs a capella, GERMANY


AlienVoices – organs a capella

Ajoutée le 5 juil. 2016

AlienVoices – Kolja Simon and Felix Mönnich
polyphonic overtone- and throatsinging

mongolian and tuvan throat singing, khoomei, sygyt, kargyraa, polyphonic overtone singing, beatbox, Obertongesang, Kehlgesang

Kolja Simon and Felix Mönnich founded AlienVoices in 2006. They combine their
overtone and throat singing with electronic music and tribal beats.

(sygyt, khoomei, kargyraa, katajjaq, mongolian & tuvan throatsinging, mongolischer Kehlkopfgesang, polyphoner Obertongesang, Inuit Kehlgesang, human beatbox, sounds of nature, construction machinery, harmonic chanting, polyphonic singing, mouth percussion, alien voices, synthesizers)
Pour les demandes d’informations commerciales :
Pays : Allemagne

Polyphonic singing by Susana calvo silent night


Polyphonic singing by Susana calvo silent night

Published on Nov 6, 2014

This is a polyphonic singing demo of silent night song as the fundamental tune and then you can hear the ovetones coming through which is the second sound you can hear. Singing two notes at once. There is no tricks just recorded on my iPhone so sound may not be great. I have only been Practising for three months but hope to get as good as Anna-maria Hefele one day 🙂 enjoy click here if you want to learn how to create your very own overtone sound


Learn how to do overtone singing with Susana Calvo


Learn how to do overtone singing with Susana Calvo

Published on Nov 6, 2014

A basic how to demo on how to create an overtone sound / this is where you sing two notes at once. While sustaining one fundamental note and then controlling your overtones to come through to create a second note and with practice sing scales with your overtones. This is my way of demonstrating this technique without any formal training. I have been practising every day as a way of meditation and sound healing and it has worked wonders for me so far. If you enjoy please like and feel free to subscribe to my channel where it will inspire me to post more videos. Inspiration this far have been people like Anna-Maria Hefele and Nestor Kornblum and miroslav grosser … Check them out 🙂
I hope you all enjoy and slow and steady wins the race lol enjoy :). If you want to hear me sing the song from the titanic movie my heart will go on by Celine Dion , half singing and half overtone singing click here:… on #SoundCloud

like my Facebook page here: